If it's not what You are looking for type in the equation solver your own equation and let us solve it.
5a^2-16=0
a = 5; b = 0; c = -16;
Δ = b2-4ac
Δ = 02-4·5·(-16)
Δ = 320
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{320}=\sqrt{64*5}=\sqrt{64}*\sqrt{5}=8\sqrt{5}$$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-8\sqrt{5}}{2*5}=\frac{0-8\sqrt{5}}{10} =-\frac{8\sqrt{5}}{10} =-\frac{4\sqrt{5}}{5} $$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+8\sqrt{5}}{2*5}=\frac{0+8\sqrt{5}}{10} =\frac{8\sqrt{5}}{10} =\frac{4\sqrt{5}}{5} $
| z+42=92 | | 2x-1/2=7x+7/6 | | 6n+50=10n=10 | | 2(m-4)/7=4 | | j+8=-12 | | —14=k+6 | | 3x+1/2x+5=180 | | (5x-2)+6=2x-4+3x=-4 | | 2d+2(4d+7)=106 | | 3.25=y/2.5-0.25 | | s-33=40 | | (9x-1)=92 | | 4x+5(3x-7)=-16 | | -3m-6=-16 | | 2n+12=5n-6 | | 3(-6x+7)+4x=-9 | | 1=x+12=6x-12 | | y/2.5+2=25.8 | | -19+6r=5(2+7r) | | 3p+5=2p-9 | | -43=-5c+4(c+7) | | 10y=-630 | | y+12=10+20 | | -5(x+2)=-5+2 | | 91+r=7 | | m/4=19 | | (2(x+6))=45 | | -3(n+3)=-5(n+1) | | 3x+5=-7+84 | | 317+x=332 | | 2x+(5-3)-3x=5 | | -5(x+3)=5+2 |